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Abstract
The statistics of the nodal lines and nodal domains of the eigenfunctions
of quantum billiards have recently been observed to be fingerprints of the
chaoticity of the underlying classical motion by Blum et al (2002 Phys. Rev.
Lett. 88 114101) and by Bogomolny and Schmit (2002 Phys. Rev. Lett. 88
114102). These statistics were shown to be computable from the random wave
model of the eigenfunctions. We here study the analogous problem for chaotic
maps whose phase space is the two-torus. We show that the distributions of
the numbers of nodal points and nodal domains of the eigenvectors of the
corresponding quantum maps can be computed straightforwardly and exactly
using random matrix theory. We compare the predictions with the results of
numerical computations involving quantum perturbed cat maps.

PACS numbers: 05.45.Mt, 02.10.Yn
Mathematics Subject Classification: 81Q50, 15A52

In a recent article Blum et al (2002) observed that the number-distributions of the nodal
domains of quantum wavefunctions of billiards whose classical dynamics is integrable are
different from those for chaotic billiards and argued that the latter are universal. Thus, the
number-distribution of nodal domains appears to be a new criterion for quantum chaos that
complements the usual ones based on spectral fluctuations. Blum et al computed these
distributions for some integrable (and separable) systems, but no analytic formula exists for
the number of nodal domains of a chaotic billiard. Berry (1977) has conjectured that the
wavefunctions of quantum systems with a chaotic classical limit behave like Gaussian random
functions. Supported by numerical evidence, Blum et al found that the limiting distribution of
the number of nodal domains can be reproduced assuming Berry’s conjecture. Bogomolny and
Schmit (2002) developed a percolation model for nodal domains of Gaussian random functions
and showed that their number is Gaussian distributed. They computed the mean and variance
of this distribution, which are both proportional to the mean spectral counting function. Their
results agree with the numerical computations reported by Blum et al for chaotic billiards.
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The influence of a boundary on the nodal lines of Gaussian random functions has been
investigated by Berry (2002), Gnutzmann et al (2002) and Berry and Ishio (2002). This is
expected to model the nodal properties of billiard wavefunctions near boundaries.

We here consider the analogous problem for one-dimensional time-reversal-symmetric
systems with discrete time evolution and whose phase space is the two-dimensional torus T

2.
The classical dynamics of such systems corresponds to the action of symplectic maps on T

2,
and their quantum mechanics to that of unitary matrices UN (called propagators or quantum
maps) on a Hilbert space of dimension N = 1/h, where h is Planck’s constant. Modelling the
eigenvectors of UN by those of random unitary symmetric matrices (such matrices constitute
the circular orthogonal ensemble, COE, of random matrix theory), we compute the number-
distributions of nodal domains and nodal points (the analogues of nodal lines in billiards)
exactly. It is shown that these become Gaussian as N → ∞ and that the mean and variance
are proportional to N (precisely as in the billiard case). We compare our results with numerical
computations involving the eigenvectors of perturbations of quantum cat maps whose classical
dynamics are hyperbolic and whose spectral statistics are known to be accurately predicted by
random matrix theory (Basilio de Matos and Ozorio de Almeida 1995, Keating and Mezzadri
2000).

Consider the Helmholtz equation with Dirichlet boundary conditions

−��(r) = E�(r) r ∈ � (1)

where � is a connected compact domain in a two-dimensional Riemann manifold. The nodal
lines are the zero sets of real solutions of equation (1); the nodal domains are connected
domains in � where �(r) has constant sign. Now, let {�n(r)}∞n=1 be a set of eigenfunctions of
the Laplacian on � ordered by the magnitude of the corresponding eigenvalue En, and let νn

be the number of nodal domains of the nth eigenfunction. Courant (1923) proved that νn � n.
Let Ig(E) = [E,E + gE], for g > 0. Blum et al (2002) introduced the distribution

Pb(x, Ig(E)) = 1

NI

∑
En∈Ig(E)

δ
(
x − νn

n

)
(2)

where NI is the number of energy levels in Ig(E). The limiting distribution of nodal domains
is defined by

Pb(x) = lim
E→∞

Pb(x, Ig(E)). (3)

We now introduce a density that is the analogue of (3) for quantum maps. The periodicity
of the two-torus constrains the wavefunction to be an infinite sum of delta-functions supported
at rational points of the form j/N , with j integer, in both the position and momentum basis
(Hannay and Berry 1980), i.e.

ψ(q) =
∑
m∈Z

N∑
j=1

cj δ

(
q − j

N
+ m

)
(4a)

ψ̂(p) =
∑
m∈Z

N∑
j=1

ĉj δ

(
p − j

N
+ m

)
(4b)

where N = 1/h and

ψ̂(p) = 1√
2πh̄

∫ ∞

−∞
ψ(q) e− iqp

h̄ dq. (5)
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Moreover, since ψ(q) and ψ̂(p) are periodic, cj = cj+N and ĉj = ĉj+N . Therefore, a quantum
state is completely determined by N complex numbers, which implies that the Hilbert space
is isomorphic to C

N . The coefficient cj can thus be interpreted as the value of ψ(q) at
q = j/N (the Heisenberg uncertainty principle is not violated, because the periodic sum of
delta-functions that defines ψ̂(p) extends to infinity). Now, let UN be the matrix realization
of a quantum map in the basis {|j 〉}Nj=1, where

〈q|j 〉 =
∑
m∈Z

δ

(
q − j

N
+ m

)
. (6)

We shall consider only systems whose dynamics is invariant under time reversal, so that UN

is a symmetric unitary matrix and, without loss of generality, the eigenvectors can be taken to
be real.

Because of the topology of the phase space, an eigenvector of UN is equivalent to a
sequence of N real numbers with periodic boundary conditions, i.e. c1 = cN+1. A nodal
point is then identified whenever two consecutive coefficients cj have opposite sign. The total
number of nodal points in a given eigenvector is

ν = 1

2

N∑
j=1

[1 − sgn(cj )sgn(cj+1)] (7)

where

sgn(x) =



1 if x > 0
0 if x = 0
−1 if x < 0.

(8)

Similarly, a nodal domain is a set of consecutive integers {j + 1, j + 2, . . . , j + k} such that
the corresponding coefficients cj lie between two nodal points and thus have constant sign.
As a consequence of the periodicity of the coefficients cj , there can be only an even number
of nodal points, equal to the number of nodal domains; the only exception is when there are
no nodal points and only one nodal domain. It follows from the results to be presented later
that as N → ∞ the probability that all the cj have the same sign is negligible, and so we shall
denote by ν both the number of nodal points and the number of nodal domains. Finally, the
limiting distribution is defined by

Pm(x) = lim
N→∞

1

N

N∑
n=1

δ
(
x − νn

N

)
(9)

where, as for billiards, νn is the number of nodal domains (points) of the nth eigenvector.
Identical definitions can obviously be formulated in the momentum representation.

When the classical limit of UN is a chaotic map, the eigenstatistics of UN are expected
to be the same as those of matrices in the COE (Bohigas et al 1984). The COE probability
measure is invariant under the mapping

U �→ OUOT (10)

where U is a unitary symmetric matrix and O is an arbitrary orthogonal matrix. Hence, each
eigenvector of U is mapped by an orthogonal transformation into an eigenvector of a new
matrix that by (10) has the same weight in the ensemble as U and the same spectrum. As a
consequence (see, e.g. Haake 2000), the eigenvectors of matrices in the COE are uniformly
distributed on the unit sphere in R

N and the joint probability density of their components is

PCOE(c1, c2, . . . , cN ) = 1

2πN/2
�

(
N

2

)
δ


1 −

N∑
j=1

c2
j


 . (11)
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The above distribution is independent of the signs of the cj , therefore they can be either
positive or negative with equal probability and there are no correlations among the signs
of different coefficients. This simple observation allows us to compute analytically all the
relevant quantities in a very straightforward way.

The signs of the cj behave like a sequence of N independent random variables sj that
assume the values {1,−1} with equal probability 1

2 ; in other words, they are equivalent to an
array of non-interacting particles with spin 1

2 and periodic boundary conditions. Thus, the
probability of a configuration with N+ spins up and N− = N − N+ spins down is given by the
binomial distribution

P(N+, N−) = 1

2N

(
N

N+

)
. (12)

The computation of the density (9) requires a simple combinatorial argument. In a periodic
chain of N spins there are N possible positions where a nodal point can be located. Hence, the
number of configurations with ν nodal points is zero when ν is odd and twice the number of
ways of choosing ν objects among N, irrespective of their ordering, for even ν, i.e.

[1 + (−1)ν]

(
N

ν

)
. (13)

The factor of two in front of the binomial coefficient is due to the fact that by simultaneously
changing the sign of all the spins in the chain we obtain a new configuration with the nodal
points in the same positions. Finally, the distribution of the number of nodal points and nodal
domains is given by

Pm(ν,N) = 1 + (−1)ν

2N

(
N

ν

)
. (14)

The mean 〈ν〉 and variance σ 2 = 〈ν2〉 − 〈ν〉2 can be easily computed:

〈ν〉 = N

2
and σ 2 = N

4
. (15)

Equations (14) and (15) correspond to the results that Bogomolny and Schmit (2002) obtained
for the percolation model of random wavefunctions in two-dimensional systems. By letting
N → ∞ and scaling x = ν/N , the discrete distribution (14) tends to a continuous Gaussian
probability density with mean 1

2 and variance σ 2 = 1/4N , i.e.

Pm(x,N) ∼
√

2N

π
exp[−2N(x − 1/2)2] N → ∞. (16)

This is the main result of this letter.
In order to compare the distribution (16) with numerical computations, we consider

perturbations of the following hyperbolic (cat) map:

A :

(
q

p

)
�→

(
2 1
3 2

) (
q

p

)
mod 1. (17)

Because of the number-theoretical properties of A, the spectrum of the propagator UN(A) is
non-generic (Keating 1991, Kulberg and Rudnick 2000) in that it does not obey the random
matrix theory conjecture. However, if a small nonlinear perturbation is introduced, the
composite map is still hyperbolic but loses its arithmetical nature. As a consequence, the
spectrum of the new quantum map has random matrix correlations. Hence, we perturb (17)
with the following shear in the momentum:

ρ :

(
q

p

)
�→

(
q

p + k
4π

cos(2πq)

)
(18)
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Figure 1. Nodal domain distributions (♦) of the unperturbed quantum cat map (a) and of its
perturbation (20) with k = 0.30 (b) compared with the Gaussian (16) (——). The dimension of
the Hilbert space is N = 3511.

and study the propagator UN(φ) of the map

φ = ρ ◦ A ◦ ρ. (19)

The matrix elements of this propagator in the basis (6) are

UN(φ)lm = 1√
iN

exp

{
2π i

N

[
l2 − lm + m2 +

N2k

8π2
(sin(2πl/N) + sin(2πm/N))

]}
(20)
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Figure 2. (a) Scaled number of nodal domains x(k) = ν(k)/N of an eigenvector of the matrix
(20), with N = 1069, as a function of the perturbation parameter k; (b) value distribution of x(k)

averaged over all eigenvectors (♦) compared with the Gaussian (16) (——).

(Basilio de Matos and Ozorio de Almeida 1995). It can be shown that the only symmetry of
this quantum map is time reversal (Keating and Mezzadri 2000). Furthermore, if k < kmax =
0.32 . . ., then the map (19) is uniformly hyperbolic and the spectral statistics of the propagator
(20) are consistent with random matrix theory (Basilio de Matos and Ozorio de Almeida
1995). Figure 1(b) shows the nodal domain distribution of the eigenvectors of the quantum
map (20) for a particular choice of k and N, together with the density (16). The nodal domain
distribution of the unperturbed quantum map, figure 1(a), also appears to be Gaussian, but its
variance cannot be predicted by random matrix theory.

As the perturbation parameter k varies, the nodal points in a given eigenvectorof the matrix
(20) change their positions. A natural question then arises: what is the minimum number of
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parameters needed to create or coalesce nodal points and alter the number of nodal domains?
In other words, what is the codimension of the nodal points? Since the spins in a chain are
uncorrelated, the functions sj (k) will be independent, therefore nodal points move randomly
without repelling or attracting each other. Thus, the codimension of nodal points is one and a
single parameter is enough to create or annihilate nodal domains with equal probability. This
behaviour is illustrated in figure 2; the scaled number of nodal domains x(k) = ν(k)/N of an
eigenvector oscillates around 1

2 , and since the sj (k) are independent, the value distribution of
x(k) is given by the Gaussian (16).

Finally, it is worth remarking that this problem is equivalent to a one-dimensional Ising
model of non-interacting spins in a magnetic field B with periodic boundary conditions, whose
Hamiltonian and partition function are

H = −B

N∑
j=1

sj sj = ±1 s1 = sN+1 (21)

and

Z(β,B) =
∑
{s1}

∑
{s2}

· · ·
∑
{sN }

exp(−βH) = 2N cosh(βB)N (22)

respectively. All the relevant thermodynamical quantities should be computed at β = B = 0.
This plays the role in this case of the analogy between the nodal statistics of billiard
wavefunctions and the Potts model suggested by Bogomolny and Schmit (2002).
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